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Abstract. An explicitself-consistentcalculation of the zero-point (ZP) and thermally excited (TE)
contributions to spin fluctuations in weak itinerant-electron (WI) ferromagnets in the presence
and absence of an external magnetic field, based on the version of spin-fluctuation theory that
makes use of the Ginzburg–Landau formalism, is presented. These calculations get rid of certain
major deficiencies of the conventional spin-fluctuation theories by bringing out clearly the roles
of ZP and TE excitations. The results so obtained demonstrate that zero-point spin fluctuations
have amajor share in renormalizing the Landau coefficients of the Stoner theory, are relatively
insensitiveto magnetic field, and make an appreciable contribution to the temperature dependence
of magnetization in WI ferromagnets. By contrast, thermally excited collective electron–hole pair
excitations almostentirelyaccount for the dependences of magnetization on temperature and field,
and getstrongly suppressedby magnetic field. The present theoretical approach, in addition, for the
first time, yields ananalyticalexpression for the suppression of thermally excited spin fluctuations
by field for temperatures just outside the critical region but below the Curie point.

1. Introduction

Transition metal-based intermetallic compounds such as MnSi, Ni3Al, NiPt, Sc3In, and ZrZn2
exhibit [1, 2]:

(i) a low saturation moment per transition metal (TM) atom at 0 K (<0.4µB /TM atom),
(ii) a low magnetic order–disorder phase transition temperature (TC < 45 K),

(iii) a largehigh-field magnetic susceptibility at 0 K,
(iv) a very large coefficient of the termlinear in temperature in the specific heat at low

temperatures,
(v) negativemagnetoresistance,

(vi) T 5/3-power-law behaviour of the resistivity over a wide temperature range aroundTC ,
(vii) temperature variations going asT 2 andT 4/3 of the spontaneous magnetizationsquaredin

the intermediate temperature range and at temperatures just outside the critical region but
belowTC , respectively, and

(viii) Curie–Weiss behaviour of the magnetic susceptibility in the paramagnetic state.

All of these properties are taken tocharacterizethe phenomenon calledweak itinerant-electron
ferromagnetism.

The earliest theoretical attempt, due to Stoner [3], to understand some of these attributes
dates back to 1939. The Stoner model [3], like its improvised versions [4], could, at best,
provide an adequate explanation for the properties (i), (iii), and (iv) mentioned above, but
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failed to account for the remaining ones. The failure of Stoner–Wohlfarth theory [3, 4] to
correctly predict the behaviour observed atfinite temperatures was subsequently traced back
to its underlying assumptions, that:

(a) the thermally excited electrons and holes move independently in a common mean
(exchange) field, and

(b) the magnetic moments diminish in magnitude with increasing temperature and finally
disappear atTC through spin-flip excitations to the Stoner continuum.

While the assumption (a) leads to a susceptibility that does not obey the Curie–Weiss law
in the paramagnetic state, the latter assumption advocates a process for the disappearance of
the moment atT = TC that costs too much energy and hence leads to unphysically large
values for the Curie temperature. Following this realization, numerous theoretical attempts
[1, 2, 5–29] have been made to take into account thecollectivenature ofcorrelatedelectron–
holepair excitations (i.e., exchange-enhanced spin-density fluctuations). As a consequence,
substantial progress has been made in understanding qualitatively (or evenquantitatively)
most (some) of the characteristic properties of weak itinerant-electron ferromagnets. However,
certain inconsistencies and inadequacies still remain. For instance, on the one hand, the spin-
fluctuation theories [1, 6, 7, 10, 13, 14, 20, 21, 24, 29–31] that completely dispense with the
zero-point contribution to spin fluctuations provide an accurate numerical estimate [1, 20, 21,
24, 29] forTC and a quantitative explanation for the Curie–Weiss (CW) behaviour [1, 6, 7, 13,
14, 20, 21, 29] of the susceptibility and magnetovolume (MV) effects [26, 30, 31] in itinerant-
electron ferromagnets. On the other hand, the CW behaviour and MV effects find alternative
explanations [22, 32] in terms of a version of spin-fluctuation theory which assumes that

(I) the zero-point spin-fluctuation contributiondepends[22, 32] ontemperaturethrough the
temperature dependence of the static susceptibility anddominates[22, 32] over the thermal
spin-fluctuation contribution for temperaturesT . TC , and

(II) the sumof zero-point and thermal spin-fluctuation amplitudes remainsconstant[22] over
a fairly wide temperature range that spans both ferromagnetic and paramagnetic regimes.

This approach, however, grosslyoverestimates[33] (by nearly a factor of two) the Curie
temperature. Thus, the role of zero-point spin fluctuations is far from being completely
understood. Furthermore, failure to yield an expression whichquantifiesthe suppression
of local spin-density fluctuations by the external magnetic field,Hext , figures among the
major deficiencies of the theoretical models proposed hitherto. This limitation has its
roots in the fact that spin fluctuations do not explicitly depend onHext but, by virtue of
their dependence on the magnetization,M, indirectly couple toHext via M. Within the
framework of the self-consistent renormalization spin-fluctuation theory [6], this difficulty
has been partially overcome [1, 34] by using the electron gas model to calculate a field- and
temperature-dependent static susceptibility that isconsistentwith the magnetic equation of
state. Considering that the electron gas model forms anoversimplifieddescription of the band
structure ofreal weak itinerant-electron magnetic systems and that anumberof adjustable
parameters [1, 34] have been used to achieve a quantitative agreement with the experiment,
such an approach cannot be regarded as satisfactory.

In this paper, we clearly bring out the role of zero-point (ZP) spin-density fluctuations
as well as the influence ofHext on thermally excited (TE) spin-density fluctuations through
an explicitself-consistentcalculation of ZP and TE contributions to spin fluctuations in the
absence and presence ofHext based on the version of the spin-fluctuation model [20] which
makes use of the Ginzburg–Landau formalism. Besides unambiguously demonstrating that
the main function of the ZP spin fluctuations is torenormalizethe Landau coefficients of the
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Stoner mean-field theory and, to a significant extent, contribute to the temperature dependence
of magnetization, the present calculations yield ananalyticalexpression for the suppression
of TE spin fluctuations byHext for temperatures just outside the critical region but belowTC
that is vindicated by the recent experiments [35] on thecrystallineweak itinerant-electron
ferromagnet Ni3Al. Moreover, the theoretical approach adopted by us gives a satisfactory
account of many hitherto unexplained properties ofamorphousweak itinerant ferromagnets
as well.

2. Theoretical formalism

The inherentlysmallmagnitude of the order parameter (local magnetization)EM + Em(Er) with
mean EM and fluctuation amplitudeEm(Er), even at thelowesttemperature, in weak itinerant-
electron ferromagnets substantially enlarges the temperature domain over which the Ginzburg–
Landau expansion of the local free energy in powers of the order parameter is valid. As a
consequence, the following forms for the total free energy and magnetic equation of state hold
[20] over the temperature range that spans both the ferromagnetic and paramagnetic regimes:

F(M) = F(0) +
1

2
[a(T ) + b(3〈m2

‖〉 + 2〈m2
⊥〉)]M2 +

b

4
M4 (1)

F(0) = F0 +
1

2
a(T )(〈m2

‖〉 + 2〈m2
⊥〉) +

b

4
(〈m2
‖〉2 + 4〈m2

⊥〉2 + 4〈m2
‖〉〈m2

⊥〉) (2)

and
1

M

∂F

∂M
= H

M(T,H)
= a(T ) + b[(3〈m2

‖〉 + 2〈m2
⊥〉) +M2(T ,H)] (3)

whereF0 is the contribution to the free energy which isindependentof the order parameter,
anda andb, the Landau coefficients in the Stoner theory [3, 4], are given by

a(T ) = −[2χ(0, 0)]−1[1− (T /T SC )2 − BST 4] (4)

b = [2χ(0, 0)M2(0, 0)]−1 (5)

and

χ(0, 0) = Nµ2
BN(EF )(TF /T

S
C )

2 = Nµ2
BN(EF )S = (χp/2)S (6)

M2(0, 0) = (NµBµ0)
2 = (Sγ )−1 (7)

S = [IN(EF )− 1]−1

γ = (1/2){NµBN(EF )}−2{[N ′(EF )/N(EF )]2 − [N ′′(EF )/3N(EF )]}. (8)

In the above expressions,χ(0, 0) andµ0 are the zero-field differential susceptibility and
moment per alloy atom at 0 K, respectively,H stands for the external magnetic field (Hext )
corrected for demagnetization and other anisotropy fields present,S is the Stoner enhancement
factor,I (the Stoner parameter) is a measure of the exchange splitting of the bands,N is the
number of atoms per unit volume,N(EF ) is the density of single-particle states (DOS) at the
Fermi levelEF andN ′(EF ) (N ′′(EF )) is its first (second) energy derivative,T SC is the Stoner
Curie temperature, the coefficientB of the T 4-term in equation (4) involves derivatives of
the DOS atEF up to fourth order and its explicit form is given in reference [36],χp is the
Pauli susceptibility, and the thermal variances of the local magnetization parallel (‖), 〈m2

‖〉,
and perpendicular (⊥), 〈m2

⊥〉, to the average magnetization,EM, are related to the imaginary
part of the dynamical wave-vector-dependent susceptibility, Imχν(Eq, ω), whereν (=‖,⊥) is
the polarization index, through the well-known fluctuation-dissipation relation [1, 14, 20–22]:

〈m2
ν〉 = 4h̄

∫
d3Eq
(2π)3

∫
dω

2π

(
n(ω) +

1

2

)
Im χν(Eq, ω) (9)
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with

n(ω) = [exp(h̄ω/kBT )− 1]−1 (10)

Im χν(Eq, ω) = ωχν(Eq) 0ν(Eq)
ω2 + 02

ν (Eq)
(11)

χν(Eq) = χν(Eq, ω = 0) = χν(0) κ2
ν

κ2
ν + q2

(12)

0ν(Eq) = γνqχ−1
ν (Eq) = 0ν(0)q(κ2

ν + q2) (13)

χν(0) = χν(Eq = 0) = (cνκ2
ν )
−1 (14)

0ν(0) = 0ν(Eq = 0) = cνγν (15)

wheren(ω) is the Bose function,0ν(Eq) is the relaxation frequency of a spontaneous spin
fluctuation of wave vectorEq and polarizationν, χν(0) is the field- and temperature-dependent
susceptibility (i.e.,χν(0) ≡ χν(T ,H)), cν is the coefficient of the gradient term in the
Ginzburg–Landau expansion, and the quantityγν depends [20] on the shape of the DOS curve
nearEF . Equations (11)–(15), obtained by using the self-consistent random-phase approx-
imation [6] (RPA) or by making use of a single-band model and assuming〈m2

ν〉, Eq, andω to be
small[20], correctly describe the results of neutron scattering experiments on archetypal weak
itinerant-electron ferromagnets. According to equation (9), spin fluctuations are made up of
two components, the zero-point (ZP) spin fluctuations,〈m2

ν〉ZP , and thermally excited (TE)
spin fluctuations,〈m2

ν〉T E , represented in equation (9) by the factors 1/2 andn(ω), respectively.

2.1. Zero-point spin fluctuations

Zero-point spin fluctuations can be further split into two parts: quantum fluctuations at
T = 0 K, 〈m2

ν〉ZP0 , and the temperature-induced changes in the zero-point spin (quantum)
fluctuations at finite temperaturesT 6= 0, 〈m2

ν〉ZPT . Specifically,

〈m2
ν〉ZP = 〈m2

ν〉ZP0 + 〈m2
ν〉ZPT =

4h̄γν
(2π)3

∫ qZPc

0
q3 dq

∫ wc(q)

0

ω dω

ω2 + 02
ν (Eq)

(16)

whereωc(q) is thewave-vector-dependentupper bound of the relaxation frequency spectrum
andqZPc is thetemperature- and field-dependentcut-off wave vector with the property that it
approaches a very small butfinitevalueq0 asT → 0 K and can possess as large a value as the
average radius,qB , of the Brillouin zone at high temperatures (i.e., atT � TC). The small
magnitude ofq0 implies that quantum fluctuations atT = 0 K occupy a very small region,
centred atq = 0, of the Brillouin zone. Deferring the description of the actual functional form
of qZPc (T ,H) = q0(0, H)+qc(T ,H) to a later section and making use of the reduced variable
x = q/qZPc , equation (16) can be put into the form

〈m2
ν〉ZP =

2h̄γν
(2π)3

(qZPc )4
[∫ 1

0
x3 ln

[(
ωc(q)

Aνx

)2

+ (x2 + y2)2
]

dx − 2
∫ 1

0
x3 ln(x2 + y2) dx

]
(17)

with y = κν/qZPc andAν = 0ν(0)(qZPc )3.
Now that the minimum time that ballistic electrons at the Fermi surface take to travel

one wavelength(2π/q) is 2π/qvF , the upper bound on the relaxation frequencyωc(q) should
equalqvF , wherevF = 3n/2h̄kFN(EF ) is the Fermi velocity andN(EF ) is the density of
states at the Fermi level,EF , per spin per atom. Use of the equalityωc(q) = qvF leads to the
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exact result

〈m2
ν〉ZP =

h̄γν

2(2π)3
(qZPc )4

[
a2
ν ln

(
1 +u2

1 +v2

)
+ aνu(1− aνv) ln

(
1 +

1

u2

)
+ a2

νv
2 ln

(
1 +

1

v2

)
− 4aν
cν(qZPc )2χν(0)

tan−1

(
1/aν

1 +uv

)]
(18)

with

aν = vF

cνγν(qZPc )2
(19)

u = 1 +y2

aν
= γν

vFχ(qZPc )
(20)

v = y2

aν
= γν

vFχν(0)
(21)

which is valid over the entire temperature range extending fromT = 0 K to temperatures well
aboveTC . In arriving at equation (18) use has been made of the identity

tan−1 α − tan−1 β = tan−1[(α − β)/(1 +αβ)]

and the well-known results∫
ln(x2 + a2) dx = x ln(x2 + a2)− 2x + 2a tan−1(x/a)∫
x ln(x2 + a2) dx = (1/2)[(x2 + a2) ln(x2 + a2)− x2)]∫
x3 ln(x2 + a2) dx = (1/4)[(x4 − a4) ln(x2 + a2) + a2x2 − (x4/2)].

Note thataν is very largebecausevF is extremely large whiley is smallcompared to unity at
temperatures not very far fromTC and in external magnetic fields of moderate strength because
χ−1
ν (0) is small (note thatχ−1

ν (0) = 0, and hencey = 0, atT = TC in the absence of an
external magnetic field). Under these conditions,v < u < 1 and logarithmic functions can be
expanded in powers ofy to yield the result

〈m2
ν〉ZP ∼=

[
qZPc (T ,H)

qZPc (T = TC,H = 0)

]4

〈m2
ν〉ZPy=0 − ξZPχ−1

ν (0) (22)

with

〈m2
ν〉ZPy=0 = [qZPc (T = TC,H = 0)]4f (23)

f = h̄γν

2(2π)3
F

F = [a2
ν ln(1 +a−2

ν ) + ln(1 +a2
ν )] (24)

ξZP = [qZPc (T ,H)]2g (25)

g = 2h̄γν
(2π)3cν

G

G = [aν tan−1(1/aν)]. (26)

In a later section, the expressions (22)–(26) will be used to bring out clearly the role of zero-
point spin fluctuations in affecting magnetic properties of weak itinerant-electron ferromagnets.
The next subsection is devoted to the calculation of the contributions toM(T,H) arising from
thermally excited spin fluctuations in different temperature ranges.
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2.2. Thermally excited spin fluctuations

2.2.1. Low temperatures.At low temperatures, the main contribution to〈m2
ν〉T E arises from

long-wavelength (q . qSW ) low-frequencyundamped(propagating) transverse modes, i.e.,
spin waves (SW). Such a contribution is obtained from equation (9) by dropping the factor
1/2 and inserting the following expression [20] for Imχν(Eq, ω) in this equation, and then
evaluating the integrals:

Im χ⊥(Eq, ω) = π

2
ωχ⊥(Eq)[δ(ω − ω(Eq)) + δ(ω + ω(Eq))] (27)

with the spin-wave propagation frequencyω(Eq) given by [20]

h̄ω(Eq) = gµBM(T ,H)χ−1
⊥ (Eq) = gµBM(T ,H)(χ−1

⊥ + c⊥q2 + · · ·)
= gµBH +DSW

⊥ (T ,H)q2 + · · · (28)

whereχ−1
⊥ = H/M(T ,H), theeffectivefieldH is the external magnetic field,Hext , corrected

for the demagnetizing field,Hdem, and other anisotropy fields,HA, i.e.,

H = Hext −Hdem +HA = Hext − 4πNM(T ,Hext ) +HA

andN is the demagnetizing factor,g is the Land́e splitting factor, and

DSW
⊥ (T ,H) = gµBM(T ,H)c⊥

is the spin-wave stiffness. Use of equations (9), (27), and (28) culminates in the result

〈m2
⊥〉T ESW = ζ(3/2)gµBM(T , 0)

[
kBT

4πDSW
⊥ (T , 0)

]3/2

. (29)

At low temperatures,T � T SC and the termBST 4 in equation (4) is negligibly small, so
a(T ) ' −[2χ(0, 0)]−1. With this value ofa(T ) and the expansion coefficientb given by
equation (5), the magnetic equation of state, equation (3), whenH = 0, can be approx-
imated by

M(T, 0)

M(0, 0)
' 1− 〈m2

⊥〉
M2(0, 0)

− 3

2

〈m2
‖〉

M2(0, 0)
. (30)

Now that the thermal demagnetization of the spontaneous magnetization in crystalline
(homogeneous) ferromagnets at low temperatures is mainly due to spin-wave excitations
(propagating transverse spin-density fluctuations), the second term in equation (30) is
considerably larger in magnitude than the third, and hence the latter term can be dispensed with.
Equation (29), when combined with equation (30), yields the well-known BlochT 3/2-power
law

M(T, 0)

M(0, 0)
= 1− gµB

M(0, 0)
ζ(3/2)

[
kBT

4πDSW
⊥ (T , 0)

]3/2

(31)

whereζ(3/2) is the Riemann zeta function andDSW
⊥ (T , 0) = gµBc⊥M(T, 0). However, in

the presence of an external magnetic field, an energy gap of magnitudegµBH appears in the
spin-wave spectrum, as is evident from equation (28), and equations (9), (10), (27), (28) and
(3) lead to the expression

M(T,H)

M(0, H)
= 1− gµB

M(0, H)
Z(3/2, tH )

[
kBT

4πDSW
⊥ (T ,H)

]3/2

(32)

where the Bose–Einstein integral function

Z(3/2, tH ) = ζ(3/2)F (3/2, tH ) =
∞∑
n=1

n−3/2e−ntH
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with tH = kBTg/kBT = gµBH/kBT allows for the energy gap in the spin-wave spectrum
introduced byHext .

In the case of crystalline or amorphous ferromagnets with competing interactions and/or
Invar characteristics, the contribution toM(T, 0) due to longitudinal spin fluctuations, i.e., the
third term in equation (30), cannot be ignored even at low temperatures for the following
reason. Owing to the constraints imposed by the competing interactions, the orientation
of a given magnetic moment in such systems is, in general, not parallel to the direction of
bulk magnetization. As a consequence, the displacements of the longitudinal component
of magnetization from the local equilibrium value are of the same order of magnitude as
the transverse displacements which give rise to spin waves. Thus, as will be apparent from
the following treatment, thediffusive (overdamped) modes (‘diffusons’), hydrodynamic in
origin, associated with the longitudinal component of the magnetization contribute to the
T 3/2-decrease of the magnetization assignificantlyas the propagating (undamped) transverse
(modes) spin fluctuations (spin waves) do. The contribution to〈m2

ν〉T E on account of diffusons
is given by the modified versions of equations (9) and (11), i.e., by the expression

〈m2
‖〉T EDi = 4h̄

∫ ∞
0

d3Eq
(2π)3

∫ ∞
0

dω

2π

1

ēhω/kBT − 1
ωχ‖(Eq) 0‖(Eq)

ω2 + 02
‖(Eq)

(33)

where [37]0‖(Eq) = Diq
2 = Aχ−1

‖ (Eq), A is a constant, andDi is the diffusion coefficient.
Use of the standard result∫ ∞

0
u2[ln u2 − (1/2u2)− ψ(u2)] du = (1/4(2π)1/2)0(3/2)ζ(3/2)/ cos(π/4)

whereu = (h̄Di/2πkBT )1/2q andψ(z) is Euler’s psi function, permits exact evaluation of
the integrals in equation (33) such that

〈m2
‖〉T EDi =

A
2
√
h̄
ζ(3/2)

(
kBT

2πDi

)3/2

. (34)

The spontaneous magnetization is given by the following expression when equations (29) and
(34) are used to represent the contributions〈m2

⊥〉 and〈m2
‖〉 in equation (30):

M(T, 0)

M(0, 0)
= 1− gµB

M(0, 0)
ζ

(
3

2

)[
kBT

4πDSW
⊥ (T , 0)

]3/2

− 3A
4
√
h̄

[M(0, 0)]−2ζ

(
3

2

)[
kBT

2πDi(T , 0)

]3/2

. (35)

Equation (35) demonstrates that the thermal demagnetization of the spontaneous magnetization
is faster in spin systems in which, besides magnons, diffusons contribute [38] to theT 3/2-
dependence ofM(T, 0). However, unlike magnons, diffusons show up as a broad central
(elastic) peak [37] in the inelastic neutron scattering (INS) intensity versus neutron energy
isotherms taken at constant values ofq. As a consequence, the value ofD deduced from the
magnetization data,DM , should besubstantially lowerthan that (DN ) measured in the INS
experiments on such systems. Such a large discrepancy between the values ofDM andDN , i.e.,
DN � DM , has indeed been found [39–42] in a number of Invar systems. SinceA (and hence
Di) has a very weak or even no dependence on the external magnetic field, the contribution to
M(T,H) due to diffusons, unlike magnons, is nearlyfield independent.

2.2.2. Intermediate temperatures.In the intermediate range of temperatures, the spin-wave
contribution is completely overshadowed by the one arising from spin fluctuations (SF). In
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view of equations (9)–(11), the latter contribution to〈m2
ν〉T E is given by

〈m2
ν〉T ESF =

8h̄γν
(2π)3

∫
q3 dq

∫ ωc(q)

0

ω dω

(ēhω/kBT − 1)(ω2 + 02
ν (Eq))

. (36)

Equation (36) is not amenable to analytical solution unless the so-calledclassicalapprox-
imation is made. This approximation implies that each modemν(Eq) for Eq < Eqc is thermally
excited such that the Bose functionn(ω), equation (10), can be approximated bykBT /h̄ω
for those values ofω for which Imχν(Eq, ω) makes an appreciable contribution to the integral
overω in equation (9). Moreover,ωc(q) = vF q is extremely large, in general, and hence the
upper limit forω-integration can be replaced by∞ without sacrificing accuracy. With these
considerations, equation (36) reduces to

〈m2
ν〉T ESF =

8γν
(2π)3

(kBT )

∫ qTEc

0
q3 dq

∫ ∞
0

dω

ω2 + 02
ν (Eq)
= kBT

2π2

∫ qTEc

0

q2 dq

χ−1
ν (Eq) . (37)

By making use of equations (12) and (14), the integral overq in equation (37) can be evaluated,
with the result

〈m2
ν〉T ESF =

kBT

2π2cν
[qTEc − κν tan−1(qTEc /κν)]. (38)

At intermediate temperatures,κν is usually large, so tan−1 z with z < 1 can be expanded in
powers ofz to estimate〈m2

ν〉T ESF , i.e.,

〈m2
ν〉T ESF '

kBT

6π2
χν(0)(q

TE
c )3 (39)

if only the first two leading terms in the expansion are retained. Recalling thatχν(0) ≡
χν(T ,H) andqTEc ≡ qc(T ,H), the variations of〈m2

ν〉T ESF with temperature (besides the factor
kBT ) and field are basically governed by the functional dependences ofχν(0) and qc on
T andH .

2.2.3. Temperatures outside the critical region but not very far fromTC . In the absence of
an external magnetic field and for temperatures close to the Curie pointTC (T < TC) but still
away from criticality, whereχ−1

ν (0) ∼= 0, equations (9)–(11) yield

〈m2
ν〉T ESF =

4h̄γν
(2π)4

∫ ∞
0
q

[∫ ∞
0

ω dω

(ēhω/kBT − 1)(ω2 + 02
ν (Eq))

]
d3Eq

if the upper limit of integration overq is taken to be infinity rather thanqB . This replacement
introduces negligible error in most cases. While the result∫ ∞

0
t dt/[(t2 + u2)(e2πt − 1)] = (1/2)[ln u− (1/2u)− ψ(u)]

facilitates evaluation of the integral overω, change of the integration variable fromq to
z = (h̄cνγν/2πkBT )1/3q puts the integral overq in the standard form, so

〈m2
ν〉T ESF =

4h̄γν
(2π)3

(
2πkBT

h̄cνγν

)4/3 ∫ ∞
0

dz z3

[
ln z3− 1

2z3
− ψ(z3)

]
= 1

33/2π2
0(4/3)ζ(4/3)(h̄γν)

−1/3

(
kB

cν

)4/3

T 4/3. (40)

By contrast, in the presence ofHext , χ−1
ν (0) remainsfinite for the range of temperatures in

question, and hence equations (9)–(11) can be analytically solved only when theclassical
approximationis used and the cut-off wave vectorqc is allowed to vary with temperature and
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field. Such an exercise leads to equation (37), as shown in the preceding subsection. Before
proceeding with the solution of the integral appearing in equation (37), we rewrite equation (12)
in the form

gµBM(T ,H)χ
−1
ν (Eq) = gµBM(T ,H)χ−1

ν (0) + (gµBM(T ,H)cν)q
2

and in analogy with the spin-wave dispersion relation, ¯hω(Eq) = gµBH+DSW
⊥ q2, equation (28),

define the spin-fluctuation stiffness asDSF
ν = gµBM(T ,H)cν . Furthermore, we assume that

for fields of moderate strength

χ−1
‖ (T ,H) (≡(χ−1

‖ (0)) = ∂H/∂M ∼= χ−1
⊥ (T ,H) (≡(χ−1

⊥ (0)) = H/M
i.e., longitudinal and transverse spin fluctuations are treated on the same footing in the
temperature and field ranges under consideration, with the result that the so-called spin-
fluctuation dispersion relation takes the form

gµBM(T ,H)χ
−1
ν (Eq) = gµBH +DSF

ν q2.

In this approximation, equation (37) can be cast into the form

〈m2
ν〉T ESF =

kBT

2π2
gµBM(T ,H)

∫ qc

0

q2 dq

gµBH +DSF
ν q2

= kBT

2π2cν

[
qc − (gµBH/DSF

ν )1/2 tan−1(qc/(gµBH/D
SF
ν )1/2)

]
. (41)

Equation (41) is an alternative form of equation (38) obtained by replacingκν in equation (38)
by κν = (cνχν(0))−1/2 = (gµBH/D

SF
ν )1/2. In the range of temperatures close toTC but

outside the critical region as well as for weak and intermediate fields, the argumentx of the
function tan−1 x in equation (41) has asizable magnitude, so tan−1 x ∼= π/2− (1/x)+ · · · and
equation (41) reduces to

〈m2
ν〉T ESF =

(
kBT

2π2

)(
qc

cν

)[
1− π

2qc

(
gµB

DSF
ν

)1/2

H 1/2 +
1

q2
c

(
gµB

DSF
ν

)
H

]
. (42)

In addition to the factorskBT , H 1/2, andH , qc(T ,H) contributes significantly to the temp-
erature and field variations of〈m2

ν〉T ESF .

2.3. Thermal variation of magnetization in the absence and presence ofHext

From the expressions derived for the zero-point and thermal components of spin fluctuations
in the subsections 2.1 and 2.2, it is evident that prior knowledge about the actual functional
form of qc(T ,H) is needed for arriving at the variations of these components (and hence of
the magnetization) with temperature and field.

2.3.1. Dependence of the cut-off wave vector on temperature and field.The temperature and
field dependences of the cut-off wave-vectorqc are given by the condition [20]

h̄0ν(qc)
∼= kBT . (43)

With the aid of equation (13), the above equality can be put into the form

q3
c + κ2

ν qc − (kBT /h̄0ν(0)) = 0. (44)

This cubic equation has only onereal root, namely

qc(T ,H) = qc(T ,H = 0)

[
1− Z +

Z3

3

]
(45)
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with

qc(T ,H = 0) =
(
kBT

h̄0ν(0)

)1/3

=
(
kBT

h̄cνγν

)1/3

(46)

Z = 1

3cν

(
h̄γνcν

kBT

)2/3

χ−1
ν (0). (47)

Apart from bringing out clearly the functional dependence ofqc on temperature, equations (45)
to (47) assert that the variation ofqc with field is basically governed by the field dependence
of χ−1

ν (0). Moreover, at a given temperature,χ−1
ν (0) increases asH increases and hence,

according to equations (45)–(47), the cut-off wave vector progressivelydiminishescompared
to its value atH = 0 asH is increased. Alternatively, the effect of the field is to strongly
suppressparticularly those spin-fluctuation modes that haveq close toqc(T ,H). SinceZ < 1
over a fairly wide temperature range belowTC , the third term in equation (45) is not considered
in subsequent calculations.

2.3.2. Temperature evolution, and suppression by magnetic field, of collective electron–
hole pair excitations. The explicit functional form ofqc(T ,H) permits one to arrive at
the following expressions for the contribution toM(T,H) due to spin-density fluctuations in
different temperature ranges. At intermediate temperatures,

〈m2
ν〉 = 〈m2

ν〉ZP + 〈m2
ν〉T E

=
[
f

(
kBT

h̄γνcν

)4/3

− g
[
q2

0 + 2q0

(
kBT

h̄γνcν

)1/3

+

{
1 +

4

3cν

(
f

g

)}
×
(
kBT

h̄γνcν

)2/3]
χ−1
ν (0)

]ZP
+

[
1

6π2

(
k2
Bχν(0)

h̄γνcν

)
T 2

− (h̄γν)
−1/3

6π2

(
kB

cν

)4/3

T 4/3 +
h̄γν

18π2
[cνχν(0)]

−1

(
kBT

h̄γνcν

)2/3]T E
=
[

1

6π2

(
k2
Bχν(0)

h̄γνcν

)
T 2 +

1

π2

(
3F − 8π

48π

)
(h̄γν)

−1/3

(
kB

cν

)4/3

T 4/3

]
− g

[
q2

0 + 2q0

(
kBT

h̄γνcν

)1/3

+

{
1 +

3F − 2π

9G

}(
kBT

h̄γνcν

)2/3]
χ−1
ν (0). (48)

By contrast, for temperatures close to, and below,TC but outside the critical region,

〈m2
ν〉 =

[
f

(
kBT

h̄γνcν

)4/3

− g
[
q2

0 + 2q0

(
kBT

h̄γνcν

)1/3

+

{
1 +

4

3cν

(
f

g

)}(
kBT

h̄γνcν

)2/3
]

× χ−1
ν (0)

]ZP
+

[
(h̄γν)

−1/3

2π2

(
kB

cν

)4/3

T 4/3

[
1− π

2

(
kBT

h̄γνcν

)−1/3

×
(
gµB

DSF
ν

)1/2√
H

]
+

2

3cν

(
h̄γν

2π2

)(
kBT

h̄γνcν

)2/3

χ−1
ν (0)

]T E
=
[
F + 8π

16π3
(h̄γν)

−1/3

(
kB

cν

)4/3

T 4/3

[
1−

(
4π2

F + 8π

)(
kBT

h̄γνcν

)−1/3

×
(
gµB

DSF
ν

)1/2√
H

]]
− g

[
q2

0 + 2q0

(
kBT

h̄γνcν

)1/3

+

{
1 +
F − 4π

3G

}(
kBT

h̄γνcν

)2/3]
χ−1
ν (0). (49)
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Expressions (48) and (49) are obtained by inserting equations (45)–(47) into equations (39)
and (42), respectively, and dropping out terms that involve powers ofχ−1

ν (0) higher thanone.
Note that the parametersf,F , g, andG have already been defined in equations (24) and (26),
andγνcν in equation (15). It is evident from the above expressions for〈m2

ν〉 that:

(i) both zero-point (ZP) and thermally excited (TE) componentssignificantlycontribute to
the temperature dependence of〈m2

ν〉 such that the latter contributiondominatesover the
former over the entire temperature range,

(ii) ZP and TE components makecompeting claimsto theT 4/3-term in the expression for
〈m2

ν〉 at intermediate temperatures whereas their contributions to the same term atH = 0
supplementeach other forT . TC ,

(iii) the field dependence ofχν(0) is solely responsible for the variation of〈m2
ν〉 with H , and

(iv) in zero field, equation (49), but for a slight difference in the numerical factor, has exactly
thesameform as equation (40).

The observation (ii) stated above is a direct consequence of the following fact. The
temperature-induced alterations in the zero-point (quantum) spin fluctuations in both zero and
finite fields give a contribution to〈m2

ν〉 that grows withT asT 4/3 over the entire temperature
range. By contrast, the functional dependence of the contribution to〈m2

ν〉 arising from
the thermally excited spin-density fluctuations on temperature,〈m2

ν〉T E(T ), varies from one
temperature range to the other and issensitiveto field as well. To elucidate this point further,
in zerofield, 〈m2

ν〉T E varies with temperature asT 4/3 for temperatures close toTC whereas,
in finite fields, itdecreaseswith increasing temperature asT 4/3 at all temperatures belowTC .
Regardless of the temperature range, change in the sign of the coefficient of theT 4/3-term
when the field is ‘switched on’ reflects thesuppressionof thermally excited spin fluctuations
by field. That field suppresses spin fluctuations is obvious from the

√
H -dependence of the

coefficient of theT 4/3-term in equation (49) but such is not the case for the coefficient of the
T 4/3-term in equation (48) because it is essentiallyfield independent. At this stage, it should
be recalled that:

(a) the −T 4/3-term in 〈m2
ν〉T E at intermediate temperatures has its origin in the field

dependence ofχ−1
ν (0) and hence ofqc (for details see the remarks made in the text

that follows equation (47)), and
(b) the functionF in equations (48) and (49) depends onT andH throughqc(T ,H) but such

dependences are extremely weak and hence can be ignored in practice.

2.3.3. Magnetic equation of state.In view of equations (1)–(5), the Stoner magnetic equation
of state, modified to account for long-wavelength and low-energy spin fluctuations of small-
fluctuation amplitude, assumes the form[

M(T,H)

M(0, 0)

]2

= 1−
(
T

T SC

)2

− 3〈m2
‖〉 + 2〈m2

⊥〉
M2(0, 0)

+ 2χ(0, 0)
H

M(T ,H)
. (50)

Note that in arriving at the above form of the magnetic equation of state theT 4-term in
equation (4) has been dropped since this term is usually extremely small. This term can,
however, become significant when the Stoner enhancement factorS is extremely large, e.g.,
for systems on the verge of ferromagnetism in whichIN(EF )→ 1 and henceS →∞. The
dependences of magnetization on temperature and field can be calculated in aself-consistent
fashion by inserting the expressions for〈m2

‖〉 and〈m2
⊥〉 valid in different temperature ranges

into equation (50). This procedure leads to[
M(T,H)

M(0, 0)

]2

= 1−
(
T

T ∗

)2

−
(
T

T1

)4/3

+
38(T )χ−1

‖ (0)

M2(0, 0)
+ 2χ(T )

H

M(T ,H)
(51)
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where (
1

T ∗

)2

=
(

1

T SC

)2

+

(
1

T0

)2

(52)

T −2
0 =

1

6π2

(
k2
B

h̄γνcν

)(
3χ‖(0) + 2χ⊥(0)

M2(0, 0)

)
(53)

T
−4/3
1 = 5

2π2

(
3F − 8π

24π

)
(h̄γν)

−1/3[M(0, 0)]−2

(
kB

cν

)4/3

(54)

8(T ) = g
[
q2

0 + 2q0

(
kBT

h̄γνcν

)1/3

+

{
1 +

3F − 2π

9G

}(
kBT

h̄γνcν

)2/3]
(55)

χ(T ) = χ(0, 0)[1 + 2b8(T )] (56)

at intermediatetemperatures, and[
M(T,H)

M(0, 0)

]2

= 1−
(
T

T SC

)2

− A(H)T 4/3 + 2χ(T )
H

M(T ,H)
(57)

with

A(H) = A(H = 0)[1− η
√
H ] (58)

A(H = 0) = (T SFC )−4/3 = 5

2π2

(
F + 8π

8π

)
(h̄γν)

−1/3[M(0, 0)]−2

(
kB

cν

)4/3

(59)

η =
(

4π2

F + 8π

)(
kBT

h̄γνcν

)−1/3(
gµB

DSF
ν

)1/2

(60)

χ(T ) = χ(0, 0)[1 + 5b9(T )] (61)

9(T ) = g
[
q2

0 + 2q0

(
kBT

h̄γνcν

)1/3

+

(
1 +
F − 4π

3G

)(
kBT

h̄γνcν

)2/3]
(62)

at temperatures just belowTC but outside the critical region (T . TC), whereχ−1
‖ (0) and

χ−1
⊥ (0) have been assumed to be equal in magnitude. Moreover, the very weak dependence

of the functions8 and9 on field, originating from the extremely slow variations of the
quantitiesF andG with H , is completely ignored. Sinceaν is usually very large, such that
F ' 1 + 2 lnaν andG ' 1, the quantities that involve the functionsF andG can be estimated
from the following expressions without any appreciable loss of accuracy:

T
−4/3
1
∼= 5

2π2

(
3 + 6 lnaν − 8π

24π

)
(h̄γν)

−1/3[M(0, 0)]−2

(
kB

cν

)4/3

(63)

8(T ) ∼= 1

4π3

(
h̄γν

cν

)[
q2

0 + 2q0

(
kBT

h̄γνcν

)1/3

+
4

3

(
1 +

ln aν
2
− π

6

)(
kBT

h̄γνcν

)2/3]
(64)

A(H = 0) = (T SFC )−4/3 ∼= 5(1 + 2 lnaν + 8π)

16π3
(h̄γν)

−1/3[M(0, 0)]−2

(
kB

cν

)4/3

(65)

η ∼= 4π2

1 + 2 lnaν + 8π

(
kBT

h̄γνcν

)−1/3(
gµB

DSF
ν

)1/2

(66)

9(T ) ∼= 1

4π3

(
h̄γν

cν

)[
q2

0 + 2q0

(
kBT

h̄γνcν

)1/3

+
4

3

(
1 +

ln aν
2
− π

)(
kBT

h̄γνcν

)2/3]
. (67)
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In order to facilitate a comparison with equation (3), the magnetic equations of state represented
by equations (51) and (57) are recast as

H

M(T,H)
= aR(T ) + bR(T )[〈m2(T ,H)〉 +M2(T ,H)] (68)

with

aR(T ) = −1

2
χ−1(T )

[
1−

(
T

T SC

)2
]
= a(T )

1 + 2b8(T )
(69)

bR(T ) = 1

2
χ−1(T )[M(0, 0)]−2 = b

1 + 2b8(T )
= γ

χp + 2γ8(T )
(70)

〈m2(T ,H)〉 = M2(0, 0)

{(
T

T0

)2

+

(
T

T1

)4/3}
− 38(T )χ−1

‖ (0) (71)

at intermediate temperatures and

aR(T ) = −1

2
χ−1(T )

[
1−

(
T

T SC

)2
]
= a(T )

1 + 5b9(T )
(72)

bR(T ) = 1

2
χ−1(T )[M(0, 0]−2 = b

1 + 5b9(T )
= γ

χp + 5γ9(T )
(73)

〈m2(T ,H)〉 = M2(0, 0)A(H)T 4/3 (74)

atT . TC .

3. Discussion and concluding remarks

A close scrutiny of equations (3)–(5) and (68)–(74) reveals that the Landau form of the magnetic
equation of state isretainedeven in the presence of zero-point and thermally excited spin-
density fluctuations, but the Landau coefficientsa and b get renormalizedin accordance
with the relation (69) (relation (72)) and relation (70) (relation (73)) for temperatures in
the intermediate range (in the proximity ofTC yet away from criticality). While zero-point
spin fluctuations have amajor share in renormalizing the Landau coefficients of the Stoner
theory and significantly contribute to the temperature dependence of the magnetization over
a wide range of temperatures, thermally excited electron–hole pair excitations are mainly
responsible for the variations of the magnetization with field and temperature over the entire
temperature range. Furthermore, zero-point (quantum) spin fluctuations leave the Stoner value
of the spontaneous magnetization at 0 K,M(0, 0), unalteredbut changethe value of the
zero-field differential susceptibility at 0 K from that in the Stoner model, i.e.,χ(0, 0), to
χ(0, 0)[1 + (5/4π3)(h̄γν/cν)bq

2
0]. Consequently, the Stoner enhancement factorS and the

quantityγ , equation (8), assumerenormalizedvalues:

SR(T = 0) = S[1 + 5b(h̄γν/4π
3cν)q

2
0]

γ R(T = 0) = γ /[1 + 5b9(T = 0)] = γ /[1 + 5b(h̄γν/4π
3cν)q

2
0]

respectively. Another consequence of theinvariance of M(0, 0) and renormalizationof
the coefficientsa and b is that equations (30)–(32) and (35) retain their validity at low
temperatures despite the fact that they do not account for the zero-point and thermally excited
non-propagatingspin fluctuations.
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WhenH = 0, the magnetic equation of state, equation (57) or (68), yields the temperature
dependence of the spontaneous magnetization forT . TC as

M(T, 0) = M(0, 0)
[

1−
(
T

T SC

)2

− A(H = 0)T 4/3

]1/2

= M(0, 0)
[

1−
(
T

T SC

)2

−
(
T

T SFC

)4/3
]1/2

. (75)

Use of the conditionM(T, 0) = 0 atT = TC in the above expression results in [20]

1−
(
TC

T SC

)2

−
(
TC

T SFC

)4/3

= 0. (76)

This relation permits a reasonably accurate determination of the Curie temperature,TC . From
equation (76), it follows thatTC = T SC if T SC � T SFC andTC = T SFC if T SFC � T SC . These two
limits represent the extreme situations wherein Stoner single-particle excitations and exchange-
enhanced spin-density fluctuations are respectively predominant.

With a view to ascertaining whether zero-point (ZP) spin fluctuations or thermally excited
(TE) spin fluctuationsaloneor both of them together determine the Curie temperature of a
weak itinerant-electron (WI) ferromagnet, the values ofTC for the archetypal WI ferromagnets
Ni3Al, MnSi, and ZrZn2, calculated in the limitT SFC � T SC using themodifiedversions of
equation (59) or (65) given below, are compared with the experimentally observed [1, 2, 20,
33–36, 43] ones in table 1. The values ofTC displayed in the columns II–VII of the table are
respectively the observed ones and those deduced from the expressions

TC = T TEC =
(

2π2

5

)3/4

[M(0, 0)]3/2(h̄γν)
1/4

(
cν

kB

)
(77)

TC = T TEC =
(

2π2

5α3

)3/4

[M(0, 0)]3/2(h̄γν)
1/4

(
cν

kB

)
(78)

TC = T ZPC =
(

16π3

5[1 + 2 lnaν ]

)3/4

[M(0, 0)]3/2(h̄γν)
1/4

(
cν

kB

)
(79)

TC = T ZP+T E
C =

(
16π3

5[1 + 2 lnaν + 8π ]

)3/4

[M(0, 0)]3/2(h̄γν)
1/4

(
cν

kB

)
(80)

TC = T ZP+T E
C =

(
16π3

5[1 + 2 lnaν + 8πα3]

)3/4

[M(0, 0)]3/2(h̄γν)
1/4

(
cν

kB

)
(81)

whereα3 = (2/33/2)0(4/3)ζ(4/3) '1.238, when the reported [1, 2, 20, 34, 36] values of the
parameters appearing in the above expressions are used. Equations (77)–(81), in ascending
order of the numerals, describe the following cases:

Table 1. Comparison between theoretical and experimental values of the Curie temperature for
archetypal weak itinerant-electron ferromagnets.

T TEC T TEC T ZPC T ZP+T E
C T ZP+T E

C

T obsC (K) (K) (K) (K) (K)
Material (K) Equation (77) Equation (78) Equation (79) Equation (80) Equation (81)

Ni3Al 41.0(5) 46.0(5) 39.5(5) 90.0(20) 35.0(10) 31.0(10)
MnSi 29.5(5) 36.0(5) 31.0(5) 58.0(20) 26.0(10) 24.0(10)
ZrZn2 28.0(5) 38.5(5) 33.0(5) 69.0(20) 29.0(10) 26.0(10)
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(i) TC is determinedsolely by the thermally excited (TE) spin fluctuations,〈m2
ν〉T ESF , and

the relevant expression for〈m2
ν〉T ESF is obtained using the classical approximation, i.e.,

equation (42) withH = 0;
(ii) the same as (i) but with〈m2

ν〉T ESF calculated without taking recourse to the classical
approximation, i.e., using equation (40);

(iii) zero-point (ZP) spin fluctuationsalonedecide the value ofTC ;
(iv) ZP and TE spin fluctuationsjointly determineTC in accordance with equation (65), which is

based on the version of equation (42) that describes〈m2
ν〉T ESF in the classical approximation

whenH = 0;
(v) the same as (iv) but the values ofTC are refined by using a more accurate expression,

equation (40), for〈m2
ν〉T ESF in equation (65) than equation (42) withH = 0.

A cursory glance at the entries in table 1 suffices to reveal the following:

(a) If ZP spin fluctuations alone were responsible for the thermal demagnetization of the
spontaneous magnetization, they would overestimateTC by more than a factor oftwo
(cf. columns II and V of table 1).

(b) By contrast, thermally excited spin fluctuations almost entirely account for the observed
values ofTC in the case of Ni3Al and MnSi (cf. columns II and IV of table 1).

(c) While each component (ZP or TE) of spin fluctuations, on its own, fails to reproduce the
observed value ofTC for ZrZn2, the combined effect of these components is to essentially
eliminate the discrepancy between the calculated and observedTC-values (cf. columns II
and VI or VII of table 1).

Therefore, from such a comparison between theory and experiment, we conclude thatTC for
Ni3Al and MnSi is determined primarily by thermally excited spin fluctuations rather than
by zero-point spin fluctuations, whereas zero-point spin fluctuations play an important role,
though not as significant as that played by thermally excited spin fluctuations, in determining
TC for ZrZn2. Moreover, sinceT SC is at least an order of magnitude larger [20] thanT SFC or even
T ZPC (table 1) for all three materials, a substantial contribution to the thermal demagnetization
of M(T, 0) arising from Stoner single-particle excitations is essentially ruled out.

The above remarks concerning the relative importance of spin fluctuations and Stoner
single-particle excitations are consistent with the conclusions drawn earlier [20] about the
extent to which these excitations influence the temperature dependence of magnetization but are
in direct conflict with the assertions made previously by Mohn and Wohlfarth [24] particularly
for ZrZn2.

Finally, the functional forms for the dependences of the spin fluctuations (and hence of
the magnetization) on temperature and field yielded by the present calculations in the limit
in which spin fluctuationsdominateover single-particle excitations are compared with those
predicted by earlier theoretical treatments [1, 2, 5, 6, 10, 20] of spin fluctuations in weak
itinerant-electron (WI) ferromagnets. As already mentioned in the introduction, previous
versions of the spin-fluctuation (SF) theory (henceforth referred to as the conventional SF
theory) do not make any specific prediction regarding the field dependence of spin fluctuations
in WI ferromagnets. In the intermediate range of temperatures, the SF theory due to Lonzarich
and Taillefer [20] (LT) demonstrates that thermally excited longitudinal (‖) and transverse (⊥)
spin fluctuations, when treated on an equal footing, result in a variation of the spontaneous
magnetization,M(T, 0), with temperature of the form

M(T, 0) = M(0, 0)[1− (T /TC)2]1/2.
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In the same temperature range, our calculations assert that the magnetization has the functional
form

M(T,H) = M(0, H)[1− (T /T0)
2 − (T /T1)

4/3]1/2

i.e., the version of equation (51) in which only theleading terms are retained,irrespective
of whether the fieldH (recall thatH stands for the external magnetic fieldcorrectedfor the
demagnetizing and other anisotropy fields present) isfinite or zero. While theT 2-term has
the same origin as in the LT theory and its coefficientT −2

0 dependsonH through the field
dependence ofχν(0), equation (53), theextraT 4/3-term is a net outcome of the competing
claims made by the thermally excited and zero-point components of spin fluctuations (the
former contributiondecreaseswith T asT 4/3 whereas the latter onedominatesover the former
and increaseswith T asT 4/3), equation (54), and its coefficientT −4/3

1 is essentiallyfield
independent. An attempt to assess the relative importance of theT 2- andT 4/3-terms in the
truncated version of equation (51) given above at intermediate temperatures using the reported
[1, 2, 20, 34, 36] values of the quantities appearing in equations (53) and (54) revealed that the
T 4/3-term, though much smaller in magnitude than theT 2-term, is not so small as to justify its
total neglect. For temperatures close toTC but still away from criticality (T . TC), thermally
excited spin fluctuations, according to the conventional SF theory, give rise to a temperature
dependence of the spontaneous magnetization of the type

M(T, 0) = M(0, 0)[1− (T /TC)4/3]1/2.

By contrast, on the basis of the calculations presented in this paper, we claim that forT . TC ,
the magnetization is given by

M(T,H) = M(0, H)[1− A(H)T 4/3]1/2

(the truncated form of equation (57) in which the second and fourth terms are dropped because
of their negligible magnitude). In this expression, valid for bothH = 0 andH 6= 0, the
T 4/3-term forH = 0 has its origin not only in thermally excited (TE) spin fluctuations,
as in the conventional SF theory, but also in zero-point (ZP) spin fluctuations, and the
contributions to the coefficientA(H) of this term arising from the TE and ZP components
are additive, equations (58) and (59); forH 6= 0, theT 4/3-term originates from TE spin
fluctuations alone. Furthermore, our calculations, besides asserting that, at all temperatures,
field suppressesthermally excited spin fluctuations but has little, or even no, effect on zero-
point spin fluctuations, for the first time,quantifythe suppression of TE spin fluctuations with
magnetic field in the form of equation (58) forT . TC .

The results of extensive magnetization measurements performed recently [35] on a
polycrystalline sample of Ni3Al and previously [44, 45] on a number of amorphous magnetic
systems exhibiting weak itinerant-electron ferromagnetism corroborate all of the predictions
of the present theoretical calculations.
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